ONLINE KNOWLEDGE TRANSFER FREELANCER PORTAL

M. Micheal Fernandas* & A. Anitha**

* PG Scholar, Department of Master of Computer Applications,
Dhanalakshmi Srinivasan Engineering College, Perambalur, Tamilnadu

** Assistant Professor, Department of Master of Computer Applications, Dhanalakshmi
Srinivasan Engineering College, Perambalur, Tamilnadu

Abstract:

In Online Knowledge Transfer Freelancer Portal project to transfer the knowledge about technical and non-technical related query to users. In Existing system of this project to provide only particular category, like Technical coding part. There is no rating the particular content and there was no bidding and freelancer concept. In our Proposed system this project to transfer the knowledge category wise like program coding, content writer, graphics design, and others. And we additionally were bidding for freelancer in category wise. Bidding process will be proceed from user side to freelancer and newsletter concept to update latest technology news and we are implementing tricks and tips for technical and non-technical update this update from admin side. And also generate the report from admin side for view how many freelancer and users registered in the website.

Index Terms: Freelancer, Bidding, Knowledge Category & Website

1. Introduction:

Knowledge sharing websites are there is no implement freelancer concept. But in this project we added the all in one concept that is we added freelancer concept because if users want complex code difficult to get the code from the internet. So Admin update the latest technology events and non-technical events. And also bidding process implementing to get the complex code from the freelancer and pay the amount for the particular work. The scope of the project is to provide the knowledge information to user and different category freelancer to complete user tasks and get the money from user.

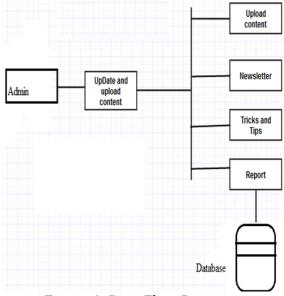


Figure 1: Data Flow Diagram

In a research lab, members are often focused on which require similar background knowledge. In these cases, scenario, it is more productive for an employee to get advices on the choices of BI tools and explanations of their features from

experienced employees; for the second scenario, the first researcher could get suggestions on model design and good learning materials from the second researcher. We investigate fine-grained knowledge sharing in collaborative environments when it is integrated with expert search, the search accuracy improves significantly. It is demonstrated the possibility of finding right persons automatically by analyzing their Web surfing data.

2. Related Works:

In year 2003 D. M. Blei, A. Y. Ng, and M. I. Jordan [2] had analyzed topic modeling. Topic modeling is a popular tool for analyzing topics in a document collection. The most prevalent topic modeling method is Latent Dirichlet Allocation (LDA). It is a generative probabilistic model for collections of discrete data. Topic modeling decomposes a document into topics. But it doesn't recover the semantic structures of people's online learning activities from their web surfing data, i.e. identifying groups of sessions representing tasks (e.g. learning "Java") and micro-aspects (e.g. learning "Java multithreading"). After applying topic modeling methods on session data, it is still difficult to find the right advisor by using the mined topics.

In year 2005 X. Liu, W. B. Croft, and M. Koll [3] has also been studied expert retrieval in other scenarios, e.g. online question answering communities. People using such services are like a community – anyone can ask, anyone can answer, and everyone can share, since all of the questions and answers are public and searchable immediately. But there are hundreds of questions asked each day but some portion of them may not be answered or there may be a lag between the time when a question is asked and when it is answered. Also the answers may not be satisfactory.

In year 2006 K. Balog, L. Azzopardi, and M. de Rijke [4] proposed a language model framework for expert search. Expert search aims at retrieving people who have expertise on the given query topic. Their Model 2 is a document-centric approach which first computes the relevance of documents to a query and then accumulates for each candidate the relevance scores of the documents that are associated with the candidate. It locates documents on topic, and then finds the associated expert. Balog showed that Model 2 performed better. But the nature of these methods is still accumulating relevance scores of associated documents to candidates. Traditional expert search does not explicitly retrieving people who are most likely possessing the desired piece of fine-grained knowledge it focused on finding experts only rather than to mine fine-grained aspects for each task.

In year 2008 R. Jones and K. Klinkner [5] found that search tasks are interleaved and used classifiers to segment the sequence of user queries into tasks. They studied real sessions manually labeled into hierarchical task. They proposed and evaluated a method for the automated segmentation of users' query streams into hierarchical units. But it considers search engine query logs only, rather than general web surfing contents (including search). Query logs do not record the subsequent surfing activity after the user clicked a relevant search result. Also it dint try to address advisor search by exploiting the data generated from users' past online behaviors.

In year 2011 A. Kotov, P. Bennett, R. White, S. Dumais, and J. Teevan [6] designed classifiers to identify same-task queries for a given query and to predict whether a user will resume a task. They introduced and addressed the two problems in the context of analysis of cross-session search tasks: (i) identifying queries from earlier sessions on the same task, and (ii) predicting whether a user will return to the same task during a later session. But it doesn't provided richer prediction models and alternative feature

sets, exploring new prediction and classification problems in the context of cross session information needs.

It also didn't try to mine fine-grained aspects for each task. Summarizing fine-grained aspects can provide a fine-grained description of the knowledge gained by a person. In year 2015 Ziyu Guan, Shengqi Yang, Huan Sun, Mudhakar Srivatsa, and Xifeng Yan [1] suggested a fine-grained knowledge sharing in collaborative environments. They proposed a method to find proper "advisors" who are most likely possessing the desired piece of fine-grained knowledge based on their web surfing activities. But the fine-grained knowledge could have a hierarchical structure. And how to search over this hierarchy is not a trivial problem. Also this work creates an issue of privacy.

3. Proposed Work:

The goal of this method is not finding domain experts but a person who has the desired piece of knowledge. The proposed methodology provides technique to find proper "advisors" who are most likely possessing the desired piece of fine-grained knowledge based on their web surfing activities. This work proposes the fine-grained knowledge sharing in collaborative environments. This method is proposed to solve the problems by first summarizing web surfing data into fine grained aspects, and then search over these aspect. First the user entered web surfing data including queries and name is analyzed and extracted. This web surfing data is clustered into tasks by a nonparametric generative model. These tasks can be further decomposed into fine-grained aspects (called micro-aspects). Then infinite Hidden Markov Model is developed to mine fine-grained aspects in each task and to employ comparison among same searches. Finally, a language model based expert search method is applied over the mined micro aspects for advisor search.

We implementing content rating for Admin uploaded content and freelancer concept also implemented. Users send the request to freelancer for complex related coding type. User to Bidding the freelancer until reasonable amount will come. After freelancer to finish work same as user need then user check the needs and wants after to transfer the amount to freelancer account. Admin to update the latest technology news and also Upload user posted the query to admin for technical related question, then admin process the user request and will be post the solution to website In most of the knowledge sharing website have not implemented with tricks and tips for technical related Q and A...

Module:

- ✓ Content upload.
- ✓ Content Rating.
- ✓ Freelancer.
- ✓ Bidding.
- ✓ Payment Gateway.
- ✓ Report Generation.

Content Upload: In this module Admin upload the technical content and non-technical content to web page. And also upload the content based on the user query. If user post the technical and non-technical related queries to send the admin to see the content and analysis the user content to upload the web page. This module mainly used to user user-friendly to discuss and clear the doubts.

Content Rating: Content rating module used to user rating the particular content uploaded from admin. In previous application there is no clear rating of the content. But now to provide clear rating for each and every content for unique purpose. One user can

rate the content one time only by the use of system IP and MAC because to avoid the fake rating of the content.

Freelancer: Freelancer who develop the work in online for user needs and wants. In this module freelancer to separate in different category like software coding, content writer, graphics designer etc. So user to assign the work to different category. If user to assign the work in particular category freelancer like Content editor, then the particular freelancer and user will communicate from bidding process.

Bidding: In this module bidding process will be done between user and freelancer. The user posts the work details to category wise freelancers. Freelancer gets the work details from the particular user then bidding for the amount to the user. This bidding process done only until user reasonable amount will come if freelancers satisfy the user amounts, then user assign the work to the particular user with specific amount of time.

Payment Gateway: In this module deals with transfer the amount from users to freelancer. If freelancers finish the work and send the demo video file to the user and user check the video file is same as my need and wants then send the particular amount to the particular freelancer. Once amount is credited freelancer send the full code or others work details otherwise will not be send the amount to the user. In the particular transaction process, freelancer register the account number while signup.

Report Generation: In this module deals with to generate the report of the how many user and freelancer are register in the particular website. Admin to track the information in every time. How much of amount transfer from user side to freelancer side, and also generate the report of category wise post. In example user add post in software code or graphics design post and so on.

4. Experimental Analysis and Results:

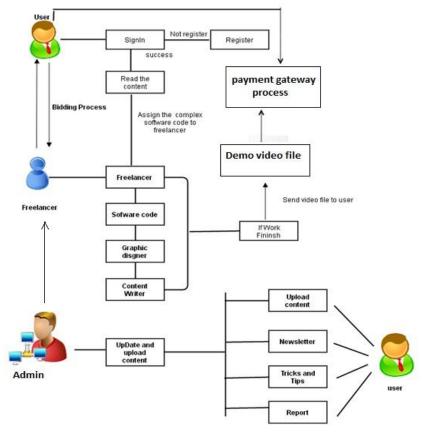


Figure 2: Architecture of Freelancer Potal

Implementation is the process of translating design specification in to source code. The primary goal of implementation is to write source code and internal implementation. So that conformance of code to its specification can be easily verified, So that debugging, testing and modification are eased. The source is developed with clarity, simplicity and elegance. The coding is done in a modular fashion giving such importance even to the minute detail so, when hardware and storage procedures are changed or now data is added, rewriting of application programs is not necessary. To adapt or perfect use must determine new requirements, redesign generate code and test exiting software/hardware. Traditionally such task when they are applied to an existing program has been called maintenance.

Implementation of software refers to the final installation of the package in its real environment, to the satisfaction of the intended users and the operation of the system. The people are not sure that the software is meant to make their job easier. The active user must be aware of the benefits of using the system. Their confidence in the software built up. Proper guidance is impaired to the user so that he is comfortable in using the application. Before going ahead and viewing the system, the user must know that for viewing the result, the server program should be running in the server. If the server object is not running on the server, the actual processes will not take place.

5. Conclusion and Future Enhancement:

The knowledge sharing freelancer portal is proved to share our knowledge to user. Admin also proved update information from admin to user side. Freelancer to get the work task from user and finish the task then send the video file to user. In before bidding process completed. Admin also update the newsletter and update the latest events from computer technology. In this have to add extra features in future like

- ✓ Send task completion details to send via send SMS.
- ✓ To add Extra category freelancer
- ✓ Track the freelancer process.

6. References:

- 1. K. Balog, L. Azzopardi, and M. de Rijke. Formal models for expert finding in enterprise corpora. In SIGIR, pages 43–50, 2006.
- 2. M. Belkin and P. Niyogi. Laplacian eigenmaps and spectral techniques for embedding and clustering. In NIPS, 2001.
- 3. D. M. Blei, T. L. Griffiths, M. I. Jordan, and J. B. Tenenbaum. Hierarchical topic models and the nested chinese restaurant process. In NIPS, 2003.
- 4. M. J. Beal, Z. Ghahramani, and C. E. Rasmussen. The infinite hidden markov model. In Advances in neural information processing systems, pages 577–584, 2001.
- 5. D. Blei and M. Jordan. Variational inference for dirichlet process mixtures. Bayesian Analysis, 1(1):121–143, 2006.
- 6. D. M. Blei, T. L. Griffiths, M. I. Jordan, and J. B. Tenenbaum. Hierarchical topic models and the nested chinese restaurant process. In NIPS, 2003
- 7. D. M. Blei and J. D. Lafferty. Dynamic topic models. In ICML, pages 113–120, 2006.
- 8. D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet allocation. Journal of machine Learning research, 3:993–1022, 2003.
- 9. P. R. Carlile. Working knowledge: how organizations manage what they know. Human Resource Planning, 21(4):58–60, 1998.